
Partial differential equations 

 

1. Determine Cauchy solution for  partial differential equations:  
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 that  satisfy conditions:   x – y = 0    and    x – yz = 1 
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So, the first first integral is    yz=1ψ  

 

 

 

 

Find now the second first integral: 
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We have the second first integral:    
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Solutions are :   yz=1ψ          and         
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Whether they are good solutions? 

 

 

We  need to examine their independence!  And must be true: 
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Solutions are good! 

 

Further  we solve Cauchy task:    x – y = 0    and     x – yz = 1 

 

What to do here? 

 

yz=1ψ    and   
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yzx −=ψ   and the conditions x – y = 0    and     x – yz = 1, all these we use to eliminate  

unknowns  and find a connection between the solutions. 

 

How is   x – yz = 1    and    yz=1ψ  must be      11 =−ψx   so:    11 +=ψx  
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So we find a connection between the solutions and we  eliminate unknowns   x, y    and   z 
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2. Determine Cauchy solution for  partial differential equations: 

 

                                                             22 yxxqyp +=+  

 

that  satisfy conditions:  :   x = 1  and   z = 1 + 2y +3 y
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Solution: 

 

 

22 yxxqyp +=+         go to the  symmetrical system 
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Find now the second first integral 
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xy = z + c2        so:    zxy −=2ψ    is   the second first integral 
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Cauchy task :     x = 1  and   z = 1 + 2y +3 y
2 

 

 

First, in both solutions replace x = 1: 
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1 1 y−=ψ    and   zy −=2ψ    from here is  2

11 y=−ψ                          11 ψ−=y   and    zy =− 2ψ  

 

 

Furthermore, this change in 

 

 

z = 1 + 2y +3 y
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3 1ψ 2ψ− - 4 = y 

 

3 1ψ 2ψ− - 4 = 11 ψ−     here now change solutions 22
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                   final solution is:        z = 4- 3x
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3. Find  the general solution of partial differential equations: 
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Check independence of  solutions: 
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So:                         
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=1ψ    the first first integral   
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y +=2ψ   the second first integral 

 

 

 

Important: When you find  firsts  integrales general solution we  can write in the form of    F( 1ψ , 2ψ )=0 

 

 

     So, in our case would be :            F(
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y +, ) = 0 

 

More is that if z comes only in one of the first integrals, the general solution we  can  write in the form of: 

  

 

      =1ψ f( 2ψ )    if z occurs in the  1ψ      and 
 

2ψ  = f( 1ψ )     if z occurs in the  2ψ  

 

 

In our case, z occurs in  2ψ   and the solution, we can write as: 
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4. Find the integrated curve of partial differential equations : 

 

                                                                 02 =+
∂

∂
+

∂

∂
xy

y

z
zx

x

z
yz  

 

which passes through  circle    x
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Let's go back now in the initial system: 
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5.  Find  the general solution of partial differential equations: 
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Where f is arbitrary integrable functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


