Partial differential equations

1. Determine Cauchy solution for partial differential equations:

$$
y^{2} p+y z q+z^{2}=0
$$

that satisfy conditions: $x-y=0$ and $x-y z=1$

Solution:

$y^{2} p+y z q+z^{2}=0 \quad$ First, we have z^{2} to switch to the other side!
$y^{2} p+y z q=-z^{2} \quad$ Now make the system differential equations in a symmetrical form
$\frac{d x}{y^{2}}=\frac{d y}{y z}=\frac{d z}{-z^{2}} \quad$ Look at second and third member of this equality \ldots
$\frac{d y}{y z}=\frac{d z}{-z^{2}} \quad$ Multiply all with z
$\frac{d y}{y}=\frac{d z}{-z} \quad$ Now integral
$\int \frac{d y}{y}=-\int \frac{d z}{z} \quad$ from here is $\ln |y|=-\ln |z|+\ln \left|c_{1}\right| \longrightarrow y=\frac{c_{1}}{z} \longrightarrow \mathrm{c}_{1}=\mathrm{yz}$

So, the first first integral is $\quad \psi_{1}=y z$

Find now the second first integral:

From $\mathrm{c}_{1}=y z \quad$ express $z=\frac{c_{1}}{y}$ and from equality $\frac{d x}{y^{2}}=\frac{d y}{y z}=\frac{d z}{-z^{2}}$ is:
$\frac{d x}{y^{2}}=\frac{d y}{y z} \quad$ here we first all multiply with y and then replace z with $z=\frac{c_{1}}{y}$,
$\frac{d x}{y}=\frac{d y}{z} \longrightarrow \frac{d x}{y}=\frac{d y}{\frac{c_{1}}{y}} \longrightarrow c_{1} d x=y^{2} d y:$ integral
$c_{1} x=\frac{y^{3}}{3}+c_{2} \quad$ replace $\quad \mathrm{c}_{1}=\mathrm{yz}$
$y z x=\frac{y^{3}}{3}+c_{2}$ express here the constant: $\quad c_{2}=y z x-\frac{y^{3}}{3}$
We have the second first integral: $\quad \psi_{2}=y z x-\frac{y^{3}}{3}$

Solutions are : $\psi_{1}=y z \quad$ and $\quad \psi_{2}=y z x-\frac{y^{3}}{3}$

Whether they are good solutions?

We need to examine their independence! And must be true:
$\frac{D\left(\psi_{1}, \psi_{2}\right)}{D(x, y)} \neq 0 \longrightarrow\left|\begin{array}{cc}\frac{\partial \psi_{1}}{\partial x} & \frac{\partial \psi_{2}}{\partial x} \\ \frac{\partial \psi_{1}}{\partial y} & \frac{\partial \psi_{2}}{\partial y}\end{array}\right| \neq 0 \quad$ For our task is $\quad\left|\begin{array}{cc}0 & y z \\ z & z x-y^{2}\end{array}\right| \neq 0$ is!

Solutions are good!

Further we solve Cauchy task: $\mathbf{x}-\mathbf{y}=\mathbf{0}$ and $\mathbf{x}-\mathbf{y z}=\mathbf{1}$

What to do here?

$\psi_{1}=y z \quad$ and $\quad \psi_{2}=y z x-\frac{y^{3}}{3}$ and the conditions $\mathbf{x}-\mathbf{y}=\mathbf{0} \quad$ and $\quad \mathbf{x}-\mathbf{y z}=\mathbf{1}$, all these we use to eliminate unknowns and find a connection between the solutions.

How is $\quad \mathbf{x}-\mathbf{y z}=\mathbf{1}$ and $\psi_{1}=y z$ must be $x-\overline{\psi_{1}}=1$ so: $x=\overline{\psi_{1}}+1$
$\mathbf{x}-\mathbf{y}=\mathbf{0} \longrightarrow \mathrm{x}=\mathrm{y}=\overline{\psi_{1}}+1$
$\psi_{2}=y z x-\frac{y^{3}}{3} \longrightarrow \overline{\psi_{2}}=\overline{\psi_{1}}\left(1+\overline{\psi_{1}}\right)-\frac{\left(1+\overline{\psi_{1}}\right)^{3}}{3}$
So we find a connection between the solutions and we eliminate unknowns x, y and z
In $\overline{\psi_{2}}=\overline{\psi_{1}}\left(1+\overline{\psi_{1}}\right)-\frac{\left(1+\overline{\psi_{1}}\right)^{3}}{3}$ we will return the right values: $\psi_{1}=y z, \psi_{2}=y z x-\frac{y^{3}}{3}$
$\overline{\psi_{2}}=\overline{\psi_{1}}\left(1+\overline{\psi_{1}}\right)-\frac{\left(1+\overline{\psi_{1}}\right)^{3}}{3}$ all multiply with 3
$3 \overline{\psi_{2}}=3 \overline{\psi_{1}}\left(1+\overline{\psi_{1}}\right)-\left(1+\overline{\psi_{1}}\right)^{3}$ here change $\psi_{1}=y z, \psi_{2}=y z x-\frac{y^{3}}{3}$ instead $\overline{\psi_{1}}$ and $\overline{\psi_{2}}$
$3\left(x y z-\frac{y^{3}}{3}\right)=3 y z(1+y z)-(1+y z)^{3} \quad$ simplify little.......and

$$
3 x y z-y^{3}+1+y^{3} z^{3}=0 \text { is the final solutions }
$$

2. Determine Cauchy solution for partial differential equations:

$$
y p+x q=x^{2}+y^{2}
$$

that satisfy conditions: : $x=1$ and $z=1+2 y+3 y^{2}$

Solution:

$y p+x q=x^{2}+y^{2} \quad$ go to the symmetrical system
$\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x^{2}+y^{2}} \quad$ From here, select the first two members of equality
$\frac{d x}{y}=\frac{d y}{x} \longrightarrow \mathrm{xdx}=\mathrm{ydy} \quad$ Integral
$\int x d x=\int y d y \quad$ So: $\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1} * \quad$ (here as a small "trick" take $\mathrm{c}_{1} *$) All multiply with $2 \ldots$
$x^{2}=y^{2}+2 c_{1} * \quad$ and $\quad 2 c_{1} *=c_{1} \quad$ then is $\quad x^{2}=y^{2}+c_{1} \quad$ or
$c_{1}=x^{2}-y^{2} \longrightarrow \psi_{1}=x^{2}-y^{2}$ the first first integral

Find now the second first integral
$\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{x^{2}+y^{2}}$
Add to the first member of equality up and down \mathbf{y}, add to second member of equality up and down x
$\frac{y d x}{y^{2}}=\frac{x d y}{x^{2}}=\frac{d z}{x^{2}+y^{2}} \quad$ Gather first two members of equality
$\frac{y d x+x d y}{y^{2}+x^{2}}=\frac{d z}{x^{2}+y^{2}}$ then $\frac{d(x y)}{y^{2}+x^{2}}=\frac{d z}{x^{2}+y^{2}} \longrightarrow \mathrm{~d}(\mathrm{xy})=\mathrm{dz} \quad$ Integral...
$\mathrm{xy}=\mathrm{z}+\mathrm{c}_{2}$ so: $\psi_{2}=x y-z$ is the second first integral
$\psi_{1}=x^{2}-y^{2}$ and $\psi_{2}=x y-z$ are the first integrals, test their independence:
$\left|\begin{array}{ll}\frac{\partial \psi_{1}}{\partial x} & \frac{\partial \psi_{2}}{\partial x} \\ \frac{\partial \psi_{1}}{\partial y} & \frac{\partial \psi_{2}}{\partial y}\end{array}\right| \neq 0$

$$
\left|\begin{array}{cc}
2 x & y \\
-2 y & x
\end{array}\right| \neq 0 \quad \text { means that solutions are good! }
$$

Cauchy task : $\quad \mathbf{x}=1$ and $\mathrm{z}=1+2 \mathrm{y}+\mathbf{3} \mathbf{y}^{2}$

First, in both solutions replace $\mathbf{x}=1$:

$\overline{\psi_{1}}=1-y^{2}$ and $\overline{\psi_{2}}=y-z$ from here is $1-\overline{\psi_{1}}=y^{2} \longrightarrow y=\sqrt{1-\overline{\psi_{1}}}$ and $y-\overline{\psi_{2}}=z$

Furthermore, this change in

$z=1+2 y+3 y^{2}$
$y-\overline{\psi_{2}}=\mathbf{1}+\mathbf{2} \mathbf{y}+\mathbf{3}\left(1-\overline{\psi_{1}}\right)$
$\mathbf{3} \overline{\psi_{1}}-\overline{\psi_{2}}-\mathbf{4}=\mathbf{y}$
$3 \overline{\psi_{1}}-\overline{\psi_{2}}-4=\sqrt{1-\overline{\psi_{1}}}$ here now change solutions $\psi_{1}=x^{2}-y^{2} \quad$ and $\psi_{2}=x y-z \quad$ instead $\overline{\psi_{1}}$ and $\overline{\psi_{2}}$ $3\left(x^{2}-y^{2}\right)-(x y-z)-4=\sqrt{1-\left(x^{2}-y^{2}\right)} \quad$ simplify little...

$$
\text { final solution is: } \quad \mathrm{z}=4-3 \mathrm{x}^{2}+3 \mathrm{y}^{2}+\mathrm{xy}+\sqrt{1-\left(x^{2}-y^{2}\right)}
$$

3. Find the general solution of partial differential equations:

$$
x p+y q=z-x y
$$

Solution:

$\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z-x y}$
$\frac{d x}{x}=\frac{d y}{y} \quad$ integral
$\int \frac{d x}{x}=\int \frac{d y}{y} \longrightarrow \ln |x|=\ln |y|+\ln \left|c_{1}\right| \longrightarrow \mathrm{c}_{1}=\frac{x}{y}, \quad$ so:
$\psi_{1}=\frac{x}{y} \quad$ is the first first integral

From $\mathrm{x}=\mathrm{yc}_{1}$ is $y=\frac{x}{c_{1}}$ and from $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z-x y}$ we'll take the first and third member.
$\frac{d x}{x}=\frac{d z}{z-x y}$ replace that $y=\frac{x}{c_{1}}$ and we have:
$\frac{d x}{x}=\frac{d z}{z-x \frac{x}{c_{1}}} \longrightarrow \frac{d x}{x}=\frac{d z}{z-\frac{x^{2}}{c_{1}}} \quad$ simplify little..
$\frac{d z}{d x}=\frac{z}{x}-\frac{x}{c_{1}} \longrightarrow z^{\prime}=\frac{z}{x}-\frac{x}{c_{1}} \longrightarrow z^{\prime}-\frac{z}{x}=-\frac{x}{c_{1}}$ linear d.e.
$z^{\prime}-\frac{z}{x}=-\frac{x}{c_{1}}$
$z(x)=e^{-\int p(x) d x}\left(c_{2}+\int q(x) e^{\int p(x) d x} d x\right)$
$\int p(x) d x=-\int \frac{1}{x} d x=-\ln |x|=\ln |x|^{-1}$
$\int q(x) e^{\int p(x) d x} d x=-\int \frac{x}{c_{1}} e^{\ln x^{-1}} d x=-\int \frac{1}{c_{1}} d x=-\frac{x}{c_{1}}$
$z(x)=x\left(c_{2}-\frac{x}{c_{1}}\right) \longleftarrow c_{1}=\frac{x}{y} \quad$ so:
$z=x\left(c_{2}-y\right)$ and express here the constant $c_{2}=y+\frac{z}{x}$
$\psi_{2}=y+\frac{z}{x} \quad$ is the second first integral

Check independence of solutions:

$$
\left|\begin{array}{ll}
\frac{\partial \psi_{1}}{\partial x} & \frac{\partial \psi_{2}}{\partial x} \\
\frac{\partial \psi_{1}}{\partial y} & \frac{\partial \psi_{2}}{\partial y}
\end{array}\right| \neq 0 \quad\left|\begin{array}{cc}
\frac{1}{y} & \frac{-z}{x^{2}} \\
\frac{-x}{y^{2}} & 1
\end{array}\right| \neq 0 \quad \text { Obviously is! }
$$

So:

$$
\begin{gathered}
\psi_{1}=\frac{x}{y} \quad \text { the first first integral } \\
\psi_{2}=y+\frac{z}{x} \quad \text { the second first integral }
\end{gathered}
$$

Important: When you find firsts integrales general solution we can write in the form of $\mathbf{F}\left(\psi_{1}, \psi_{2}\right)=\mathbf{0}$

$$
\text { So, in our case would be : } \quad \mathrm{F}\left(\frac{x}{y}, y+\frac{z}{x}\right)=\mathbf{0}
$$

More is that if z comes only in one of the first integrals, the general solution we can write in the form of:

$$
\begin{aligned}
& \psi_{1}=\mathbf{f}\left(\psi_{2}\right) \quad \text { if } \mathbf{z} \text { occurs in the } \psi_{1} \quad \text { and } \\
& \psi_{2}=\mathbf{f}\left(\psi_{1}\right) \quad \text { if } \mathbf{z} \text { occurs in the } \psi_{2}
\end{aligned}
$$

In our case, z occurs in ψ_{2} and the solution, we can write as:

$$
y+\frac{z}{x}=\mathbf{f}\left(\frac{x}{y}\right) \quad \text { and from here we can express } \mathrm{z} \text {, if necessary... }
$$

$\frac{z}{x}=\mathbf{f}\left(\frac{x}{y}\right)-\mathrm{y} \quad$ when all multiply with $\mathrm{x} \ldots$

$$
\mathrm{z}=\mathrm{x} \mathbf{f}\left(\frac{x}{y}\right)-\mathrm{xy}
$$

4. Find the integrated curve of partial differential equations :

$$
y z \frac{\partial z}{\partial x}+z x \frac{\partial z}{\partial y}+2 x y=0
$$

which passes through circle $x^{2}+y^{2}=16$ for $z=3$

Solution:

$y z \frac{\partial z}{\partial x}+z x \frac{\partial z}{\partial y}+2 x y=0 \quad$ we know that $\quad \frac{\partial z}{\partial x}=p \wedge \frac{\partial z}{\partial y}=q$
$y z p+z x q=-2 x y$
$\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{-2 x y}$
$\frac{d x}{y z}=\frac{d y}{z x} \quad$ all multiply with z
$\frac{d x}{y}=\frac{d y}{x}$ from here is $\int x d x=\int y d y$ then $\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}^{*} \longrightarrow \mathbf{x}^{2}=\mathbf{y}^{2}+\mathbf{c}_{1}$ where is $\mathbf{c}_{\mathbf{1}}=\mathbf{2} \mathbf{c}_{1} *$
$c_{1}=x^{2}-y^{2} \longrightarrow \psi_{1}=x^{2}-y^{2}$ is the first first integral
Let's go back now in the initial system:
$\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{-2 x y}$ expand the first member of equality with x , and second with y
$\frac{x d x}{x y z}=\frac{y d y}{y z x}=\frac{d z}{-2 x y}$ gather now the first two members of equality
$\frac{x d x+y d y}{2 x y z}=\frac{d z}{-2 x y} \quad$ multiply all with 2 xy
$\frac{x d x+y d y}{z}=\frac{d z}{-1}$ multiply all with z and we have
$x d x+y d y=-z d z \quad$ integral
$\frac{x^{2}}{2}+\frac{y^{2}}{2}=-\frac{z^{2}}{2}+c_{2}^{*} \quad$ multiply all with 2
$x^{2}+y^{2}=-z^{2}+2 c_{2} * \quad$ we'll mark $\quad 2 c_{2} *=c_{2}$
$\mathrm{x}^{2}+\mathrm{y}^{2}=-\mathrm{z}^{2}+\mathrm{c}_{2} \longrightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{c}_{2}$
$\psi_{2}=\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}$ is the second first integral
$\psi_{1}=x^{2}-y^{2} \quad$ is the first first integral
Check independence: $\left|\begin{array}{ll}\frac{\partial \psi_{1}}{\partial x} & \frac{\partial \psi_{2}}{\partial x} \\ \frac{\partial \psi_{1}}{\partial y} & \frac{\partial \psi_{2}}{\partial y}\end{array}\right| \neq 0 \quad\left|\begin{array}{cc}2 x & -2 y \\ 2 x & 2 y\end{array}\right|=8 x y \neq 0$
Now $x^{2}+y^{2}=16$ for $z=3$
Change these values in $\psi_{2}=\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}$ So: $\overline{\psi_{2}}=16+3^{2}=16+9=25$, Conclude:
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=25$
is requested integral curve, this is a sphere (central) with a radius of $r=5$

5. Find the general solution of partial differential equations:

$$
(2 z-3 y) \frac{\partial u}{\partial x}+(3 x-z) \frac{\partial u}{\partial y}+(y-2 x) \frac{\partial u}{\partial z}=0
$$

Solution:

$\frac{d x}{2 z-3 y}=\frac{d y}{3 x-z}=\frac{d z}{y-2 x}$ multiply with 2 second member of equality
$\frac{d x}{2 z-3 y}=\frac{2 d y}{6 x-2 z}=\frac{d z}{y-2 x}$ gather now the first two members of equality
$\frac{d x+2 d y}{6 x-3 y}=\frac{d z}{y-2 x} \quad$ simplify little...
$\frac{d x+2 d y}{3(2 x-y)}=\frac{-d z}{2 x-y} \quad$ all multiply with $3(2 x-y)$
$d x+2 d y=-3 d z \quad$ integral
$\mathrm{x}+2 \mathrm{y}=-3 \mathrm{z}+\mathrm{c}_{1} \longrightarrow c_{1}=x+2 y+3 z$

$$
\psi_{1}=x+2 y+3 z \quad \text { is the first first integral }
$$

Let's go back to the start system:

$\frac{d x}{2 z-3 y}=\frac{d y}{3 x-z}=\frac{d z}{y-2 x}$ "expand" the first, second and third member of equality with $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$\frac{x d x}{2 x z-3 x y}=\frac{y d y}{3 x y-y z}=\frac{z d z}{y z-2 x z}$ gather the first two members of equality
$\frac{x d x+y d y}{2 x z-y z}=\frac{z d z}{y z-2 x z}$
$\frac{x d x+y d y}{2 x z-y z}=\frac{-z d z}{2 x z-y z}$
$x d x+y d y=-z d z \quad$ integral
$\frac{x^{2}}{2}+\frac{y^{2}}{2}=-\frac{z^{2}}{2}+c_{2}^{*} \quad$ multiply all with 2
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{c}_{2}$ where is: $\mathrm{c}_{2}=2 c_{2}^{*}$
$\psi_{2}=\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}$ is the second first integral

Finally solution is: $\quad \mathbf{u}=\mathbf{f}\left(x+2 y+3 z, \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)$

Where f is arbitrary integrable functions.

